Inhibition of K(Ca) channels restores blunted hypoxic pulmonary vasoconstriction in rats with cirrhosis.

نویسندگان

  • E P Carter
  • K Sato
  • Y Morio
  • I F McMurtry
چکیده

Rats with liver cirrhosis exhibit the hepatopulmonary syndrome composed of blunted hypoxic pulmonary vasoconstriction and arterial hypoxemia. The purpose of this study was to investigate the roles of nitric oxide (NO) and endothelin-1 (ET-1) in the blunted hypoxic pressor response (HPR) in rats with common bile duct ligation (CBDL). Lungs from CBDL rats exhibited markedly blunted HPR, increased endothelial NO synthase (NOS) protein expression, and decreased ET-1 mRNA and peptide expression. The blunted HPR was not reversed by sequential NOS and soluble guanylyl cyclase inhibition by nitro-L-arginine and 1H-[1,2,4]oxadiazolo[4,3-a]quinoxaline-1-one (ODQ), respectively, or by NOS inhibition combined with ET-1 addition. The blunted HPR was not due to a generalized inability to vasoconstrict because perfusion pressure was equally elevated by increased perfusate KCl in CBDL and sham lungs. After KCl vasoconstriction, HPR was potentiated and did not differ between CBDL and sham lungs. Blunted HPR was also completely restored in CBDL lungs treated with nitro-L-arginine, ODQ, and the Ca(2+)-activated K(+) channel blockers apamin and charybdotoxin. These results indicate that although CBDL-induced liver cirrhosis is associated with increased NO and decreased ET-1 in the lung, the blunted HPR is a result of additional factors and appears to involve Ca(2+)-activated K(+) channel activation.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Sustained Hypoxic Pulmonary Vasoconstriction in the Isolated Perfused Rat Lung: Effect of α1-adrenergic Receptor Agonist

Background: Alveolar hypoxia induces monophasic pulmonary vasoconstriction in vivo, biphasic vasoconstriction in the isolated pulmonary artery, and controversial responses in the isolated perfused lung. Pulmonary vascular responses to sustained alveolar hypoxia have not been addressed in the isolated perfused rat lung. In this study, we investigated the effect of sustained hypoxic ventilation o...

متن کامل

Hypoxic pulmonary hypertension is prevented in rats with common bile duct ligation.

Biliary cirrhosis in the rat triggers intrapulmonary vasodilatation and gas-exchange abnormalities that characterize the hepatopulmonary syndrome. This vasodilatation correlates with increased levels of pulmonary microcirculatory endothelial NO synthase (eNOS) and hepatic and plasma endothelin-1 (ET-1). Importantly, during cirrhosis, the pulmonary vascular responses to acute hypoxia are blunted...

متن کامل

Hypoxic pulmonary vasoconstriction: role of ion channels.

Acute hypoxia induces pulmonary vasoconstriction and chronic hypoxia causes structural changes of the pulmonary vasculature including arterial medial hypertrophy. Electro- and pharmacomechanical mechanisms are involved in regulating pulmonary vasomotor tone, whereas intracellular Ca(2+) serves as an important signal in regulating contraction and proliferation of pulmonary artery smooth muscle c...

متن کامل

Inhibition of Hypoxic Pulmonary Vasoconstriction of Rats by Carbon Monoxide

Hypoxic pulmonary vasoconstriction (HPV), a unique response of pulmonary circulation, is critical to prevent hypoxemia under local hypoventilation. Hypoxic inhibition of K(+) channel is known as an important O(2)-sensing mechanism in HPV. Carbon monoxide (CO) is suggested as a positive regulator of Ca(2+)-activated K(+) channel (BK(Ca)), a stimulator of guanylate cyclase, and an O(2)-mimetic ag...

متن کامل

Invited Review HIGHLIGHTED TOPIC Pulmonary Circulation and Hypoxia Hypoxic pulmonary vasoconstriction: role of ion channels

Mauban, Joseph R. H., Carmelle V. Remillard, and Jason X.-J. Yuan. Hypoxic pulmonary vasoconstriction: role of ion channels. J Appl Physiol 98: 415–420, 2005. doi:10.1152/japplphysiol.00732.2004.—Acute hypoxia induces pulmonary vasoconstriction and chronic hypoxia causes structural changes of the pulmonary vasculature including arterial medial hypertrophy. Electroand pharmacomechanical mechanis...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • American journal of physiology. Lung cellular and molecular physiology

دوره 279 5  شماره 

صفحات  -

تاریخ انتشار 2000